THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Problem Set 7: integration

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{ccc}
0 & \text { if } & x=0 \\
1 & \text { if } & 0<x \leq 1
\end{array}\right.
$$

Show that f is Riemann / Darboux integrable and the integral is 1 .
(Remark: Without using the equivalence of Riemann integrable and Darboux integrable.)
2. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by $f(x)=x$.

Show that f is Riemann / Darboux integrable and the integral is $\frac{1}{2}$.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in \mathbb{Q} \\
1 & \text { if } & x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

Show that f is Riemann / Darboux integrable and the integral is 1 .
4. Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined by

$$
f(x)= \begin{cases}1 & \text { if } x=\frac{1}{n} \text { for some natual number } n \\ 0 & \text { otherwise }\end{cases}
$$

Is f integrable on $[0,1]$? Why?
5. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is integrable on $[a, b]$. Show directly that $|f|$ is integrable.
(b) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be functions which are integrable on $[a, b]$. Define $H:[a, b] \rightarrow \mathbb{R}$ by $H(x)=\max \{f(x), g(x)\}$ for all $x \in[a, b]$. Show that H is integrable on $[a, b]$.
(Hint: Show that $H(x)=\frac{f(x)+g(x)+|f(x)-g(x)|}{2}$ and recall the linearity of integrals.)
6. Let $f, g:[a, b] \rightarrow \mathbb{R}$ and $\alpha, \beta \in \mathbb{R}$. Suppose that (P, \vec{c}) is a tagged partition of $[a, b]$, show that

$$
S(\alpha f+\beta g, P, \vec{c})=\alpha S(f, P, \vec{c})+\beta S(g, P, \vec{c})
$$

Suppose that $f, g:[a, b] \rightarrow \mathbb{R}$ are Riemann integrable, by using the above result, show that $\alpha f+\beta g$ are Riemann integrable on $[a, b]$.
7. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function such that $f(x)=0$ except possibly for a finite number of points on $[a, b]$. Prove that f is integrable on $[a, b]$ and $\int_{a}^{b} f=0$.
(b) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be bounded functions such that $f(x)=g(x)$ except possibly for a finite number of points on $[a, b]$. Prove that f is integrable on $[a, b]$ if and only if g is integrable on $[a, b]$.
8. Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable, and let P be an even partition of $[a, b]$ given by

$$
P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}, \quad x_{i}=a+\frac{(b-a) i}{n} \text { for } i=1,2, \ldots, n
$$

Define the trapezoidal rule by

$$
T_{n}(P, f)=\frac{b-a}{n} \sum_{i=1}^{\infty}\left(\frac{f\left(x_{i-1}+f\left(x_{i}\right)\right.}{2}\right)
$$

Show that $\lim _{n \rightarrow \infty} T_{n}(P, f)=\int_{a}^{b} f$.
9. (Extension of the First Fundamental Theorem of Calculus) Let $f:[a, b] \rightarrow \mathbb{R}$ be integrable. Suppose that the function $F:[a, b] \rightarrow \mathbb{R}$ is continuous, that $F:(a, b) \rightarrow \mathbb{R}$ is differentiable, and that $F^{\prime}(x)=f(x)$ for all $x \in(a, b)$ except possibly finitely many points. Prove that

$$
\int_{a}^{b} f=F(b)-F(a)
$$

10. Let $f:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $f(x) \geq m$ for all $x \in[a, b]$ for some $m>0$. Suppose that $1 / f:[a, b] \rightarrow \mathbb{R}$ be the reciprocal function.
(a) Let P be a partition of $[a, b]$. Show that

$$
U(1 / f, P)-L(1 / f, P) \leq \frac{1}{m^{2}}[U(f, P)-L(f, P)]
$$

(b) Hence, prove that $1 / f$ is integrable on $[a, b]$.

